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Coagulation and recombination in a turbulent medium is studied statistically with 
the use of Lagrangian coordinates. 

The theoretical study of coagulation and recombination in the presence of turbulent dif- 
fusion is a problem of great difficulty. The causes of the difficulty are basically as fol- 
lows. It is a complicated matter to obtain a closed system of equations for the average 
(over the turbulent fluctuations) quantities such as the concentration of particles and the 
spectrum because the effect of large fluctuations, comparable in amplitude to the average 
quantities themselves. Furthermore, the equations obtained are usually nonlinear partial 
differential equations which can normally be soved only by resorting to numerical methods. 
Finally the use of parabolic equations to describe turbulent transport is possible only when 
the spatial scale is large compared to the characteristic scale of turbulent mixing [i], 
and the latter is often comparable to the characteristic scale of the problem. For these 
reasons there is practically no discussion in the literature of coagulation and recombination 
in the presence of turbulent diffusion. 

These difficulties can be overcome to a significant degree by using the Lagrangian 
approach to describe turbulent mixing [2]. In this approach we follow the evolution of the 
various quantities of interest along the individual particle trajectories and the solutions 
are averaged (assuming it is possible to obtain solutions) by taking into account the La- 
grangian statistical characteristics of the velocities [i]. 

We consider the process of coagulation in a uniform, incompressible, turbulent medium, 
using the Lagrangian approach. The equation for the mass spectrum f(m) of the particles has 
the form 

D [ = I  [~(m', m- -m ' ) f (m ' ) f (m- -m ' ) - - f (m ' ) j "  [3(m, m')f(m')dm', (1)  
Dt 2 b o 

where D/Dt is the total derivative. Here we use the approximation in which the exchange of 
particles between turbulent regions is neglected; this implies the condition ns << I, 
where s is the Kolmogorov microscale of the turbulence. In the Lagrangian approach (i) is 
solved for the individual trajectories and so the spatial dependence drops out. The result- 
ing equation has been studied extensively [3]. 

We assume that the solution of this equation can be found in the form f = f({f0(m, ro)},t) 
where f0(m, re) is the initial spectrum at t = 0, and r~ is the initial position. Transfor- 
ming to Euler coordinates, we obtain f(r m, t) = f({f0(m, re(r, t))}, t), where re(r, t), 
the integral of the equation dr/dt = v(r, t), satisfies the condition 

&o + (vv) ro = 0 (2)  
at 

with the initial condition r0(r , 0) = r. We represent the solution n the form f = I~(ro(r, 
t) -r') f({f0(m, r')}, t)dr' and average over the turbulent fluctuations (an average is 
denoted by an overbar). We then obtain 

T =  j" O (r, r', t) f (fro (m, r')}, t)dr', (3) 

where the function G(r, r', t) = ~(ro(r, t) -- r') = ~ (r(t, r') -- r) describes the turbu- 
lent diffusion from an instantaneous source at the point r' of unit intensity. This func- 
tion has been quite extensively studied, both theoretically and experimentally [i, 4]. 
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We illustrate the approach for the example of a constant coagulation kernel 8 = const. 
In this case the solution of the coagulation equation can be written in terms of the gener- 
ating function (Laplace transform) 

n2~o(P, ro) (~) 

@ (p, t) = n~ (ro) + (n -- no (ro)) ~o (p, ro) ' 

where ~0(P, ro) is the initial spectrum at t = 0, and no(to) is the initial concentration. 
The dependence of the concentration n(t) on time is given by the law of binary recombinations 
as 

no (to) n =  
(5) 

1 + -~ trio (ro) 

The quantity n is then 

n = ] 6 (r, r', t) no (r') dr'. (6)  
1 + -~ trio (r') 

In p r a c t i c e  t he  Gauss ian  a p p r o x i m a t i o n  G(r ,  r ' ,  t )  ~ exp ( - ( r -  r ' ) 2 / 2 c ~ 2 ( t ) )  i s  o f t e n  
completely satisfactory. The variance o2(t) is determined by the Taylor formula in terms of 
the Lagrangian velocity correlation function [i]. 

We consider a special case. Let the initial concentration distributio~ be a Gaussian: 

no(to) = (2n~20)-3/2Qexp (-- 2a'--~--o ) " (7) 

Then 

n =  ~--L (--I)k-1 ( 2~2/3 /2 '  

r ~ 

1 +  ) 

Asymptotically t -> ~(o=(t) >> 002 ) we have 

Q exp 2~ (t) 4 { ~t 
n ~ (2~0~ (0)3/2 3 F~ ~ 2 (2~a~)3/2 ) 'ln3/~- 

~ t  Q h 
2 (2~o~)3/2 J " 

Diffusion determines the decay law ~ c3(t), coagulation gives the decay law t -x and a 
combination of these two effects gives the factor in3/2t, which is obviously due to a de- 
crease in the rate of coagulation. 

The evolution of the spectrum is conveniently analyzed in terms of the moments M k = 

f (m) mkdm = (-i) k dk/dp k ~[p=0, which in our case satisfy the recursion relation 
0 

~t k-, ~! M ~ - ~  (ro). M~ (t) = M~ (ro) + -~- 
s[ (k s) [ 

(9) 

NOTATION 

f(m), mass spectrum of the particles; 8 (m, m'), coagulation kernel; v(r, t), turbulent 
velocity field; G(r, r' t) instantaneous source function for turbulent diffusion; #(p, t) 
generating function of the spectrum; n, concentration of particles. 
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STABILITY OF THE LAMINAR BOUNDARY LAYER WITH STRONG BLOWING 

L. I. Zaichik and V. A. Pershukov UDC 532.526 

The authors present a method of calculating nonsimilarity laminar boundary 
layer flow over a permeable flat plate with uniform blowing. 

As was shown in [i, 2], the boundary-layer equations for zero-gradient flow over a per- 
meable flat plate can be solved for a finite range of variation of the blowing parameter F w. 
As F w tends to a critical value the boundary layer thickness increases without bound, while 
the friction coefficient tends to zero. For the case of uniform blowing along the length 
of the plate similar conclusions were reached in [3, 4], from direct numerical solution of 
the boundary layer equations. However, the results of the experimental investigation of [5] 
indicate that the laminar flow regime can exist for large enough intensities of transverse 
mass flow. It was shown in [5, 6] that as the blowing parameter increases there is a gra- 
dual deformation of the velocity profile from the Blasius to a sharply pronounced S-shape 
typical of jet type flows. When F w reaches the critical value one does not observe a sharp 
increase of the boundary layer thickness nor a change of the flow regime, i.e., the bound- 
ary layer separates smoothly from the wall. A simple analytical solution of [7] gives good 
agreement with the experimental data at moderate blowing intensities, as was shown in [6]. 
The unsatisfactory agreement between the theoretical and experimental velocity distributions 
with strong blowing is due primarily to the negative pressure gradient induced by the trans- 
verse mass flow, which is not accounted for in either the numerical solutions [3, 4] or the 
analytical solution [7]. 

i. To establish (i.e., find) the velocity distribution in the unperturbed boundary 
layer with uniform blowing, we use the results of an asymptotic analysis of the equations of 
motion employed in [8, 9]. These papers obtained the result that for strong blowing the 
dividing streamline characterizing the zero value of the stream function is a straight line, 
and the region bounded by it has the shape of the wedge 

yo = (~M~/2) ~/3x. ( 1 ) 

Therefore, to describe the velocity distribution in the boundary layer with uniform 
blowing and allowing for the induced pressure gradient, we use the similarity family of 
Falkner-Skan profiles appropriate to flow over a permeable wedge with semiopening angle 

f"'+f"f+~O--f'2)=O, n=O, f= - - f~ ,  
(2) 

f'=O; ~=oo, f ' = l .  

Thus, it is assumed that the influence of blowing on the external flow may be an effec- 
tive method of replacing the original problem by an equivalent one: flow over a body whose 
profile is formed by the dividing streamline between the blown gas and the incident flow. 
Then, assuming, on the basis of Eq. (i), that the blowing creates the same pressure gra- 
dient as in flow over a wedge, i.e., that these two flows are similar, we obtain the follow- 
ing relation between the pressure parameter and the blowing intensity: 

We used Eq. (3) to calculate the velocity distributions ~hown in Fig. i. In a comparison 
with the experimental data of [5], obtained for a Reynolds number of Re x = 5-103 , we find 
satisfactory agreement of the results for all intensities of transverse mass blowing. 
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